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'sillimanite'-like structure, respectively) is, however, 
not practicable. The dark regions within this image 
are assumed to be due to small domains possessing 
the average mullite composition. The average size of 
these domains is about 3-5 nm 2. They are separated 
by the above-mentioned, linearly arranged (parallel 
to [102]) white dots. An antiphase relationship 
between these domains cannot be confirmed for the 
mullite crystals investigated (x = 0.25 and x = 0.4). 

The results discussed above show that the intensi- 
ties of the white dots on the experimental HREM 
images of the ac plane are influenced by all com- 
ponents which modulate the structure of mullite. A 
proportionality between the intensity of these white 
dots and of only the concentration of vacancies on 
certain sites, as assumed by several authors (Naka- 
jima et al., 1975; Y1/i-J/i/iski & Nissen, 1983), cannot 
be verified. 

The assumption of Schryvers et al. (1988) that the 
oxygen vacancies are randomly distributed in mullite 
crystals obtained by sintering of 3A1203 + 2ZrSiO4 
can be best verified by inspecting the b'c* and the 
a'c* diffraction pattern. In this case a continuous 
diffuse background rather than satellite reflexions 
must be obtained. Moreover, the computer simu- 
lations of Schryvers et al. (1988) along the c axis 
were unfortunately performed using an average 
structure model. According to our contrast calcula- 
tions the intensity differences between the four con- 
trast maxima within the unit cell must vanish owing 
to an equal vacancy distribution as shown in Fig. 
7(/). The one-to-one correspondence between the 
HREM image contrast and the projected crystal 
structure of mullite, and the correspondence between 
the vacancy arrangement and the intensity of the 
simulated contrast features, can, according to the 
image simulations shown in Fig. 7, best be obtained 
on the (001) projections. 
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Abstract 

A variety of ideal close-packing structures were con- 
structed using a stacking mechanism with rhombus, 
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square and triangular nets of atoms interrelated by a 
common angular parameter. The structural features 
of the resulting space lattice are greatly influenced by 
the sequence and mode of stacking and the type of 
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net. It was found that stacking by AB sequence yields 
structures of highest symmetry whereas stacking via 
a central mode results in structures of higher coordi- 
nation number and packing density. The importance 
of symmetry in determining the most probable struc- 
tures is highlighted and a generalized description of 
ideal close-packing structures is proposed. 

1. Introduction 

The concept of closest packing of rigid atoms was 
used (Barlow, 1883) in the study of crystal structure. 
It was later developed into eutectic packing of atoms 
(O'Keeffe, 1977) to permit larger atoms to occupy 
interstitial sites, and such structures are widely 
adopted by intermetallic and ionic compounds 
(Gehman, 1963). Monatomic elements are expected 
to crystallize in h.c.p, and c.c.p, structures. The 
description of h.c.p, as a stack of hexagonal closest 
packing layers can be easily understood. It is, how- 
ever, not intuitively obvious how hexagonal layers 
can be stacked into a cubic structure. On the other 
hand, the adoption of b.c.c, structure by some 27 
elements is regarded as an anomaly (Ho & Douglas, 
1968) as it does not contain a closest packing layer. 
Of late, h.c.p., c.c.p, and b.c.c, structures have been 
described (Figueiredo & Lima-de-Faria, 1978) as 

S R. T 

Fig. 1. Unit cells of the three planar lattices showing their 
symmetry axes at the lattice sites (shaded) and valley sites 
(unshaded): diad, C ) ;  triad, A; tetrad, F-I; hexad, O; c, central- 
valley site; e, edge-valley site;/, lattice site. 

B B 

0 
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Fig. 2. Two rhombus nets (A, B) stacked via the central mode. The 
vertical component V, of the stacking vector V forms the height 
of a triclinic unit cell of edge 2r. 

stacks of hexagonal, square and rhombus layers, 
respectively. It was shown (Lima-de-Faria, 1978) 
that the structures depend on (i) the ways in which 
atoms are arranged in the layer and (ii) the manner 
in which identical layers are stacked together. 
Recently, primitive tetragonal packing (p.t.p.) and 
body-centered tetragonal (b.c.t.) structures have been 
found in some oxides (West, 1987). This paper 
presents a unified description of all close-packing 
structures. The effects of the stacking of identical 
layers on the symmetry, packing density and coordi- 
nation number of the resulting space lattice are 
critically discussed. 

2. Stacking mechanism 

There are five types of planar nets (Buerger, 1971) of 
which only three are applicable to a closely packed 
monatomic layer. These are rhombus, square and 
triangular nets (Fig. 1). Two types of periodic 
depression exist on both sides of the layer. They are 
a central valley at the center and edge valleys at the 
mid-edges of the unit cell or sub-cell of the net. Nets 
are stacked on top of one another by a stacking 
vector V at the lattice site (Fig. 2). This vector has 
two componenets: (i) horizontal Vh which indicates 
lateral displacement of the nets and (ii) vertical V, 
which measures interlayer separation. Equation (1) 
relates the two components to the radius r of the 
atom: 

V~, + V~ = 4r 2. (1) 

Stacking of layers involves the fitting of atoms of 
one layer into the valleys of its two sandwiching 
layers to maximize the use of space in accordance 
with Laves principle (Laves, 1955). There are two 
modes of stacking involving either central- or edge- 
valley sites. Only one set of valleys can be occupied 
at a time by atoms of adjacent layers. In either a 
square or a rhombus net the multiplicity of the 
central valley is 1. Thus the orientations of the two 
sandwiching layers have to be the same (A, A) but 
different from that of the layer (B) being sandwiched. 
This stacking sequence is denoted by AB. 

For a central valley in a triangular net (or an edge 
valley in either a square or a rhombus net) the 
multiplicity is 2. The orientation of the two sandwich- 
ing layers can either be the same (A, A) or differ- 
ent (A, C) with respect to the layer (B) being 
sandwiched. The two sequences are thus denoted by 
AB and ABC, respectively. By analogy, the three 
sequences of stacking a triangular net via the edge 
mode (multiplicity = 3) are AB, ABC and ABCD. In 
general, there are m sequences for a valley of m 
multiplicities. It is interesting to note that although 
the nets are precursors, they are, however, not pre- 
formers of the resulting space lattices. It is a c o m -  
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bination of the mode and sequence of stacking and 
the type of net that determines the structure of the 
lattice. Thus a structural symbol such as A~q is self- 
explanatory and fully representative of the ways by 
which a structure is generated. In this symbol, X 
denotes the type of planar nets (R for rhombus, S for 
square, T for triangular), i denotes the mode of 
stacking (c for central mode, e for edge mode), and q 
denotes the sequence of stacking (AB, ABC or 
ABCD). 

3. Ideal crystal structures 

3.1. Stacking via the central mode 

(a) Square net. The tetrad symmetry at both the 
lattice and valley sites survives in the stacking by AB 
sequence. All central-valley sites are converted into 
regular octahedral holes. Each layer is a mirror plane 
since it is stacked above and below by layers of 
identical spatial configuration. In addition, there are 
four triads emanating from the hole. The resulting 
lattice thus belongs to the space group Fm3m and 
is a face-centered cubic closest packing (c.c.p.) 
structure. 

(b) Rhombus net. Both the lattice and valley sites 
have diad symmetry..Three orthogonal mirror planes 
and a tetrad along the short diagonal of the rhombus 
net are created. The resulting lattice has space-group 
symmetry I4/mmm and is a body-centered tetragonai 
(b.c.t.) structure. 

(c) Triangular net. The symmetry axes at the lattice 
and valley sites are hexad and triad, respectively. In 
AB sequence, the octahedral holes at the unoccupied 
valley sites form empty channels normal to the nets. 
Because adjoining nets are staggered with respect to 
each other, the improper triads (3) at the unoccupied 
valley sites of the net are converted into screw hexads 
63. The resulting primitive lattice belongs to the 
space group P63/mmm and is a hexagonal closest 
packing (h.c.p.) structure. In ABC sequence, there 
are four triads at the center of the octahedral hole. 
The resulting lattice has space symmetry Fm3m and 
is a cubic closest packing (c.c.p.) structure. 

3.2. Stacking via the edge mode 

(a) Square net. The lattice and valley sites have 
tetrad and diad symmetry, respectively. In AB 
sequence, a set of vertical triangular nets is created. 
This gives rise to a set of diads at their lines of 
intersection and a set of hexads normal to the verti- 
cal triangular nets. The resulting lattice belongs to 
space group P6/mmm and is a simple hexagonal 
packing (s.h.p.) structure. In ABC sequence, the 
tetrads at the lattice sites disappear leaving diads as 
the principal symmetry axes. The lattice also pos- 

sesses two orthogonal mirror planes which contain 
the axes. The resulting lattice thus belongs to space 
group P2mm and is a primitive orthorhombic close- 
packing (o.c.p.) structure. 

(b) Rhombus net. Diads exist at both the lattice 
and valley sites. In AB sequence, a set of vertical 
triangular nets is created. The nets are displaced 
laterally so that the hexads associated with each net 
are completely removed. The resulting lattice has 
vertical diads at its lattice sites and mirror planes on 
the stacking layers. It has the centrosymmetrical 
space group C2/m and is a monoclinic close-packing 
(m.c.p.) structure. In ABC sequence, the resulting 
lattice consists, however, of three interlacing primi- 
tive monoclinic sub-lattices and has the centrosym- 
metrical space group P2/m. It is a monoclinic 
close-packing (m.c.p.) structure. 

(c) Triangular net. In AB sequence, the hexads at 
the lattice sites are converted into diads while the 
diads at the valley sites remain unchanged. A set of 
vertical triangular nets is created. At each line of 
intersection a tetrad is formed. This tetrad is the 
principal axis of the lattice which also has three 
orthogonal mirror planes. The space group is thus 
I4/mmm and the lattice is a body-centered tetragonal 
(b.c.t.) structure. In either ABC or ABCD sequence, 
the axial symmetry of the resulting lattice is reduced 
to a set of diads. It consists of two and three 
sub-lattices, respectively. In either case, a simple 
monoclinic packing (s.m.p.) structure of space group 
P2 is created. 

4. Structural features 

4.1. Symmetry, packing density and coordination 
number 

The symmetry of the net is readily modified when 
identical nets are stacked together. Its modification 
depends on both the sequence and mode of stacking. 
For example, in AB sequence each layer becomes a 
mirror plane. When intersected by a vertical axis, the 
plane generates inversion centers at the points of 
intersection. The translational symmetry of the lat- 
tice converts a proper axis into an improper axis or a 
screw axis (e.g. 6 3 and 3 present in T~B). On the 
other hand, the layer does not become a mirror plane 
in either the ABC or ABCD sequence of stacking. A 
new axis may be added (e.g. triads created in S~B) or 
an existing one may be removed (e.g. hexads absent 
from T~B) such that the resulting space lattice bears 
little or no resemblance at all in symmetry to the nets 
from which it was built (see Table 1). 

The percentage packing density %P(O) of a given 
structure can be obtained by reference to a two-layer 
stacking (Fig. 2) using the generalized equation (2): 

%P(O) = (lOOrr/3)a(l +cosO)-b/sinO % (2) 
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Table 1. Structural parameters of ideal crystal structures 

Angular 
Structure Type of Space % packing Coordination parameter 

symbol structure* group density number (°) 
~vAB c.c.p. Fm3m 74.0 12 90 
~nc c.c.p. Fm3m 74'0 12 60 
T~R h.c.p. P63/mm 74"0 ! 2 60 
~n  b.c.t. 14/mmm 69.8 10 60 
/~An b.c.t. 14/mmm 68.0 < P(O) < 74.0 8 90 < 0 < 60 
R',~ n b.c .c. lm3m 68-0 8 70 ° 32' 
~n s.h.p. P6/mmm 60.5 8 90 
/Van m.c.p. C2/m 60.5 < P(O) < 69.8 8 90 < 0 < 60 
.-~Anc o.c.p. P2mm 60.5 8 90 
R'Anc, m.c.p. P2/m 60.5 < P(O) < 69"8 8 90 < 0 < 60 

~sc-, ~sco  s.m.p. P2 69.8 10 60 

* c.c.p, cubic closest packing, h.c.p, hexagonal closest packing, b.c.t, body-centered tetragonal packing, b.c.c, body-centered cubic 
packing, s.h.p, simple hexagonal packing, m.c.p, monoclinic closest packing, o.c.p, orthorhombic closest packing, s.m.p, simple 
monoclinic packing. 

Table 2. Characterstic constants a and b of equation 
(2) for the percentage packing density 

Stacking 
mode 
Central 

Edge 

a b Planar net 
0.707 0.500 Rhombus 
0-707 0.500 Square 
0.612 0 Triangular 
0-577 0 All 

where a and b are constants characteristic of the 
mode of stacking and type of nets (Table 2). Geo- 
metrically both the square and triangular nets can be 
considered to be derived from a rhombus net (Fig. 3) 
with its oblique angle 0 equal to 90 and 60 °, respec- 
tively. In transforming a rhombus into a triangular 
net, its central valleys are converted into a set of edge 
valleys with the simultaneous creation of two sets of 
central-valley sites. The dependence of packing den- 
sity on the angular parameter and the mode of 
stacking is obvious from Fig. 4, which shows unequi- 
vocally that stacking via the central mode yields 
structures of higher packing density throughout the 
entire range of 0. 

The coordination number L of the space lattice 
can be obtained by reference to that of the atom (N) 

S 
R 

/' T 

' " , ,  ~. / 

; , ,  ,%., 

Fig. 3. The correlation of  square, rhombus and triangular nets via 
the angular parameter 0. Square net, 0 = 90°; triangular net, 0 
= 60°; rhombus net, 90 > 0 > 60 °. 

and valley (n) in the net from which the lattice is 
generated using equation (3): 

L = N + 2n. (3) 

The factor 2 takes care of the two sandwiching 
layers. In stacking via the central mode, n is 2, 3 and 
4 for rhombus, triangular and square nets, respec- 
tively. In stacking via the edge mode, n is 2 for all 
nets. 

4.2. Effect of sequence and mode of stacking 

%P(O) and L are independent of the sequence of 
stacking [equations (2) and (3)]. In stacking involving 
a valley of multiplicity m, there are m sequences 
which give rise to m close-packing structures of the 

75 

/ 
70 . 

65 

6060 ¢o e 90 
Fig. 4. Plot of percentage packing density % P ( 0 )  versus the 

angular parameter 0 (°) for all ideal space lattices derived from 
stacking planar nets via the central mode (curve 1) and the edge 
mode (curve 2). 
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same %P(O) and L but different structure and sym- 
metry. Among the m sequences, stacking by AB 
sequence yields structures of the highest symmetry. 
Between the two modes of stacking, stacking via the 
central mode results in structures of consistently 
higher %P(O) (Fig. 4) and L (Table 1). Hence, based 
on Laves principle (Laves, 1955) of maximum pack- 
ing density, highest symmetry and largest coordina- 
tion number, the three most probable structures 
arising from the three basic nets should be R~s, SCAn 
and T]s, which are b.c.t., c.c.p, and h.c.p., respec- 
tively. This principle is fully exemplified by the last 
two structures which are also the closest packing 
structures. 

5. The b.c.c, structure 

The packing density of a b.c.t, structure has its 
minimum value of 68% at 0 = 70 ° 32' (curve 1 in 
Fig. 4). The equation below relates 0 to its axial ratio 
c/a: 

c/a = 0-71(1 + cos0)/sin0. (4) 

At 70 ° 32' the ratio equals 1 and b.c.t, becomes b.c.c. 
It is interesting to note that although b.c.t, is more 
densely packed than b.c.c., it rarely occurs whereas 
the latter is the third most frequently adopted struc- 

ture after c.c.p, and h.c.p. This preferential adoption 
of b.c.c, is obviously due to its higher symmetry 
(isometric). Thus symmetry factors strongly out- 
weigh packing density in determining the most prob- 
able structure. This rationale is consistent with the 
central force of interaction which favours highly 
symmetrical arrangements rather then the densest 
packing structures. For example, simple hexagonal 
(s.h.p.) structure is occasionally adopted (Pearson, 
1972) even though its %P(O) is smaller vis-d-vis 
other close-packing structures of lower symmetry. 
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Abstract 

The commensurately modulated structure of tanta- 
lum niobium tetratelluride, (Tao.72Nb0.Ea)Te4, was 
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determined by X-ray (Mo Ka, A = 0"71069 A) dif- 
fraction at room temperature. The symmetry is 
described by superspace group P P~/~I(OOy) (t = O) 
with a (2a x 2a x c) basic unit cell or equivalently by 
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